

lowa Farm Bureau's Margin Management Webinar Series presents:

#### Impacts of 4R Nitrogen Management on Water Quality

#### Thursday, March 29, 2018 1:00 pm

Sponsored by:



Speaker: Dr. Matthew Helmers,

Dean's Professor, College of Ag. & Life Sciences Professor, Dept. of Ag. & Biosystems Engineering, Iowa State University

## **IOWA STATE UNIVERSITY**

Department of Agricultural and Biosystems Engineering

# Impacts of 4R Nitrogen Management on Water Quality

Matthew Helmers Dean's Professor, College of Ag. & Life Sciences Professor, Dept. of Ag. and Biosystems Eng. Iowa State University



Fig. 1. MANAGE Drain Load subsurface (a) vs. surface drainage site-years (b).

Replicated subsurface drainage plots to evaluate performance of various in-field management practices



## Flow Monitoring System



## **Drainage Monitoring System**



#### Soil Nitrate Production vs. Crop Nitrate Uptake



In the shaded areas, the soil produces nitrate, but there is no crop to use it. As a result, <u>some</u> nitrate is lost to waterways.

IOWA STATE UNIVERSITY Extension and Outreach Replicated subsurface drainage plots to evaluate performance of various in-field management practices



# Twenty-Seven Year Summary



# Twenty-Seven Year Summary



Combined Corn-Soybean System – Same N management – Early Spring Sidedress at 150-160 lb-N/acre

# **Nitrate Response to Nitrogen**



IOWA STATE UNIVERSITY Extension and Outreach

# Nitrate Response to Nitrogen



# $\textbf{Results} \rightarrow \textbf{Nitrogen source}$

Averaged over the corn-soybean rotation











## **Impact of Application Timing: 2006-14**



#### **Impact of Application Timing: 2006-14**





Replicated subsurface drainage plots to evaluate performance of various in-field management practices



## Treatments

| Treatment<br>Number | Tillage               | Nitrogen Application<br>Time                                                                                                     | Nitrogen<br>Application Rate<br>(lb N/acre)* |
|---------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| 1                   | Conventional tillage* | Fall (anhydrous<br>ammonia with<br>nitrapyrin)**                                                                                 | 135                                          |
| 2                   | Conventional tillage  | Spring (anhydrous<br>ammonia)                                                                                                    | 135                                          |
| 3                   | Conventional tillage  | Split with variable N at<br>sidedress (40 lb/acre of<br>urea 2x2 starter at<br>planting plus in-season<br>agrotain treated urea) | 135                                          |
| 4                   | Conventional tillage  | None                                                                                                                             | 0                                            |

\* Fall chisel corn stalks with spring disk/field cultivate, and spring disk/field cultivate soybean stubble.

\*\*In fall of 2014 freezing conditions occurred early and prevented fall application. Application occurred in early spring 2015.

### Flow-weighted Nitrate-N Concentration





\*Means with the same letter in the same year are not significantly different, P=0.05.

## Flow-weighted Nitrate-N Concentration





\*Means with the same letter in the same year are not significantly different, *P*=0.05.

### Soil Nitrate Production vs. Crop Nitrate Uptake Addition of a Cover Crop



In the shaded areas, the soil produces nitrate, but there is no crop to use it. As a result, <u>some</u> nitrate is lost to waterways.

### Winter Cereal Rye Cover Crops



## **Gilmore City**



#### Impacts of Cover Crops on Nitrate-N Load in Drainage Water – Gilmore City



# Impacts of Cover Crops



Replicated subsurface drainage plots to evaluate performance of various in-field management practices



## Impact of Land Management



Replicated subsurface drainage plots to evaluate performance of various in-field management practices



### Management systems for 2016 - 2018 study

| System | Application timing and N<br>source    | Сгор                                    | Tillage                        | N rate<br>(lb/ac) |
|--------|---------------------------------------|-----------------------------------------|--------------------------------|-------------------|
| 1      | Spring UAN<br>-                       | Corn<br>Soybean                         | Chisel plow<br>Field cultivate | 150<br>-          |
| 2      | Early fall manure<br>-                | Corn<br>Soybean                         | No-till<br>No-till             | 150<br>-          |
| За     | Late fall manure + Instinct           | Continuous corn                         | Chisel plow                    | 200               |
| 3b     | Spring manure                         | Continuous corn                         | Chisel plow                    | 200               |
| 4a     | Late fall manure                      | Continuous corn                         | Chisel plow                    | 200               |
| 4b     | Late fall manure +<br>1 ton/ac gypsum | Continuous corn                         | Chisel plow                    | 200               |
| 5      | Early fall manure<br>-                | Corn + Rye cover<br>Soybean + Rye cover | No-till<br>No-till             | 150<br>-          |
| 6      | Late fall manure<br>-                 | Corn<br>Soybean                         | No-till<br>No-till             | 150<br>-          |

Research funded by Iowa Pork Producers Association and Calcium Products Inc.

# Monthly nitrate-N levels in corn 2016-2017



Research funded by Iowa Pork Producers Association and Calcium Products Inc.

# Monthly nitrate-N levels in soybeans 2016-2017



Research funded by Iowa Pork Producers Association and Calcium Products Inc.

# Monthly nitrate-N levels in continuous corn 2016-2017



Research funded by Iowa Pork Producers Association and Calcium Products Inc.

#### Cereal rye cover crop N uptake



Research funded by Iowa Pork Producers Association and Calcium Products Inc.

#### Manure injection bands



Rye cover crop growth at NERF April 6, 2016

#### Corn phase yields



Research funded by Iowa Pork Producers Association and Calcium Products Inc.

#### Soybean phase yields



Research funded by Iowa Pork Producers Association and Calcium Products Inc.

#### Continuous corn yields



Research funded by Iowa Pork Producers Association and Calcium Products Inc.

# **Temporal Changes**

# Corn Yield



# N Output with Grain



# **Edge-of-Field Practices**

# Drainage water management COCCCCC 100000 60000000 200000000000 USDA TRANSFORMING DRAINAGE. United States Department of Agriculture National Institute of Food and Agriculture

# Subsurface Drainage Bioreactor



# Saturated buffers

COCCOC



CCCCC .



United States Department of Agriculture National Institute of Food and Agriculture

# Nitrate Removal Wetland





# To Reach our Goals

## • WE NEED IT ALL!!

- N Management
- Cropping practices/landuse
- Edge-of-Field Practices







# **IOWA STATE UNIVERSITY**

Department of Agricultural and Biosystems Engineering

# Resources

- 10 Ways to Reduce Nitrate Loss -<u>http://draindrop.cropsci.illinois.edu/wp-</u> <u>content/uploads/2016/09/Ten-Ways-to-Reduce-</u> <u>Nitrate-Loads\_IL-Extension-\_2016.pdf</u>
  - Drainage Water Quality Impacts of Various In-Field Nutrient Management Practices
    - Agricultural Drainage Research and Demonstration Site Gilmore City – AE 3614
    - Comparison of Biofuel Systems Site AE 3615
    - Northeast Research and Demonstration Farm AE 3616
    - Northwest Research and Demonstration Farm AE 3617
    - Southeast Research and Demonstration Farm AE 3618

## **IOWA STATE UNIVERSITY**

Department of Agricultural and Biosystems Engineering

# Discussion

#### mhelmers@iastate.edu

Twitter: @ISUAgWaterMgmt Website: http://agwatermgmt.ae.iastate.edu/ Iowa Farm Bureau's Margin Management Webinar Series:

### Impacts of 4R Nitrogen Management on Water Quality

## **Thanks for your participation!**

### Please fill out a brief evaluation by clicking: https://tinyurl.com/fourRManage

Recordings of this webinar and materials will be available for Farm Bureau members at <u>www.iowafarmbureau.com</u>

Speaker: Dr. Matthew Helmers,

Dean's Professor, College of Ag. & Life Sciences Professor, Dept. of Ag. & Biosystems Engineering, Iowa State University